
International Journal of Theoretical Physics, Vol. 38, No. 1, 1999

State Property Systems and Closure Spaces: A Study
of Categorical Equivalence

Diederik Aerts,1 Eva Colebunders,1 Ann Van der Voorde,1

and Bart Van Steirteghem1

Received August 7, 1998

We show that the natural mathematical structure to describe a physical entity by
means of its states and its properties within the Geneva ±Brussels approach is
that of a state property system. We prove that the category of state property
systems (and morphisms) SP is equivalent to the category of closure spaces (and
continuous maps) Cls. We show the equivalence of the `state determination
axiom’ for state property systems with the `T0 separation axiom’ for closure
spaces. We also prove that the category SP0 of state-determined state property
systems is equivalent to the category L0 of based complete lattices. In this sense
the equivalence of SP and Cls generalizes the equivalence of Cls0 (T0 closure
spaces) and L0 proven by ErneÂ(1984).

1. INTRODUCTION

Constantin Piron started the elaboration of a realistic axiomatic theory

for the foundations of quantum mechanics in Geneva and the first presentation
of this approach can be found in Piron (1976). Apart from an axiomatic

scheme presented in Piron (1976) Ð founded on his celebrated representation

theorem (1964) Ð a first step of `operational’ foundation was exposed in

Piron (1976) by introducing the concept of `test’ for a property. One of the

authors of the present paper (D. Aerts) studied the problem of the description
of `separated physical entities’ within this approach. Making use extensively

of the `operational’ idea presented in Piron (1976), Aerts elaborated the

`operational’ aspects of the theory, introducing a powerful `calculus of tests’

(Aerts, 1981, 1982). In this way the theory grew to a complete realistic and
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operational theory, and the `operational’ part was very well suited to tackle

`physical’ problems, like the description of separated entities (Aerts, 1981,

1982) and the filtering out of the classical part of an entity (Aerts, 1983).
By now the theory has been further elaborated in Geneva and in Brussels

and therefore we shall refer to it as the Geneva±Brussels approach to the

foundations of physics. It is a `realistic’ and `operational’ theory, where a

physical entity is described by means of its states and properties, and the

properties are `operationally’ introduced as `testable properties.’

The foundational material of the approach can be found in Piron (1976,
1989, 1990) and Aerts (1981, 1982, 1983) and we will therefore refer to

these writings as the foundation papers. Meanwhile different problems have

been investigated within the approach and connections with other approaches

to the foundations of physics have been studied (Aerts, 1981, 1982, 1983,

1984, 1985, 1994, 1998; Aerts et al., 1997; Aerts and Valckenborgh, 1998;

Cattaneo et al., 1988; Cattaneo and Nistico, 1991, 1992, 1993; Daniel, 1982;
d’ Emma, 1980; Foulis et al., 1983; Foulis and Randall, 1984; Giovannini

and Piron, 1979; Gisin, 1981; Jauch and Piron, 1965; Ludwig and Neumann,

1981; Moore, 1995; Piron, 1964, 1969, 1976, 1989, 1990; Randall and

Foulis, 1983).

Although the foundational setting for the Geneva±Brussels approach
was elaborated in Piron (1976, 1989, 1990) and Aerts (1981, 1982, 1983),

the basic mathematical structure of the approach independent of the physical

content had not yet been properly identified. This was started in Aerts (1998)

within a more general setting and the resulting mathematical structure was

called there a `state property system’ (Aerts, 1998; also see Section 2 of the

present paper). It was shownÐ as we will do again in Section 2 of this
paperÐ that the mathematical structure of a state property system, once the

objects and morphisms are given their physical meaning, manages to represent

all the subtleties of the approach. This has the enormous advantage that

theorems can now be proven within the approach without using the `physical

interpretation, an indispensable step for a real formalization of the theory.

Moreover, it is proven that state property systems and their morphisms
are in natural correspondence with closure spaces and continuous maps (Aerts,

1998). In the present paper we want to investigate this correspondence in

detail: we show that the category of state property systems and its morphisms,

which we call SP, is equivalent to the category Cls of closure spaces and

continuous maps. This gives us a ª lattice representationº for all closure

spaces. It generalizes older (well-known) lattice representations where the
closure spaces were (at least) T0 (ErneÂ, 1984): if we restrict ourselves to T0

closure spaces, we recover the categorical equivalence between `based com-

plete lattices’ and T0 closure spaces, given in ErneÂ(1984; see Sections 6 and

7 of the present paper).
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The mathematical structure of a state property system that we will present

in this paper appears as the formalization of a state property entity within

the Geneva±Brussels approach. We remark, however, that it appears also as
a fundamental mathematical structure in other situations where states and

properties of physical entities are formalized [e.g., the situation presented in

Aerts (1998) of an experiment state outcome entity with one experiment].

We remark that the description of a physical entity by means of its states

and properties that we use in this article differs from the one in the founding

papers (Piron, 1976, 1989, 1990; Aerts 1981, 1982, 1983) in two aspects:
1. We make an explicit distinction between the properties and the states.

In the founding papers a state of an entity is represented by the set of all

actual properties, making it impossible to introduce the distinction as we will

do here. The distinction between states and properties was introduced in

Aerts (1994), where it was shown that a condition of `state determination’

for an entity reduces this more general situation to the earlier one. It was
also shown that the `state determination’ condition is equivalent to the T0

separation axiom of the corresponding closure space. In Aerts (1994) the

categorical equivalence between the description of an entity by means of

states and properties and the representation in the corresponding closure space

was not yet elaborated: this will be the main subject of the present paper.
2. We explicitly distinguish between the physical content and the mathe-

matical form of the theory. This was not done systematically in the founding

papers nor in Aerts (1994). In Aerts (1998), where such a systematic distinc-

tion between the physical and the mathematical is introduced for a more

general theory also containing experiments and outcomes, the fruitfulness of

this distinction became clear. It leads to the definition of the `mathematical’
concept of a `state property system,’ representing the states and the properties

of a general physical entity. This concept will be the central mathematical

ª objectº in the present paper. We will show in a forthcoming paper how the

categories formulated in the present paper are connected to the categories

presented in Moore (1995).

2. THE DESCRIPTION OF AN ENTITY BY MEANS OF ITS
STATES AND TESTABLE PROPERTIES

Let us consider an entity S. The entity S is at every moment in a definite

state p, and let us call ( the well-defined set of considered states of the entity S.

If we have in mind a certain property a that the entity might have and
if this property is testable, we can construct a test a for a. Such a test, also

sometimes called `question’ or `experimental project’ in Piron (1976, 1989,

1990) and Aerts (1981, 1982, 1983), consists in an experiment that can be

performed on the entity. If the experiment gives us the expected outcome,
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we will say that the answer to the test is `yes.’ If the experiment does not

give us the expected outcome, we will say that the answer to the test is `no.’

Hence, to define a test, one has to give (1) the measuring apparatus used to
perform the experiment connected to the test, (2) the manual of operation of

the apparatus, and (3) a rule that allows us to interpret the results in terms

of `yes’ and `no.’ Let us denote a well-defined set of tests for an entity S by Q.

We will say that a test a of the entity S in a state p is `true,’ and the

corresponding property a is `actual,’ if we can predict with certainty that the

answer `yes’ would come out if we were to perform the test.
The way we have introduced the concepts of state, property, test, `true’

test, and `actual’ property has up to now been equivalent to the way they

are introduced in the founding papers. As we have remarked, we want to

make an explicit distinction between the physical content of the theory and

its mathematical form. That is the reason we introduce some additional

concepts now.
For a state p we consider the set h ( p) of all tests a P Q which are

`true’ if the entity is in state p. Let us give now a formal definition of an

entity described by its states and its set of testable properties.

Definition 1 (state test entity). A state test entity S is defined by a set

( (the set of states), a set Q (the set of tests), and a function

h : ( ® 3(Q): p j h ( p) (1)

where h ( p) is, by definition, the set of tests which are `true’ if the entity S
is in state p. We call h the state test function. Hence, for a test a P Q and
a state p P ( we have

a is true if S is in state p Û a P h ( p) (2)

We denote a state test entity S as S ( ( , Q, h ).

If the situation is such that whenever the entity S is in a state such that

test a is `true,’ then also test b is `true,’ we say that a `implies’ b (or a `is

stronger ’ than b ) and we denote a , b . Let us now formally introduce the

`implication’ on the set of tests of a state test entity.

Definition 2 (test implication). Consider a state test entity S ( ( , Q, h ).
For a , b P Q we define

a , b Û if for p P ( we have a P h ( p) then b P h ( p) (3)

and we say that a `implies’ b and call this relation the `test implication.’

We have a natural implication on the states that was not identified

properly in the founding papers. If for two states p, q P ( the set h ( p) of

all tests that are `true’ if the entity is in state p includes the set h (q) of all
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tests that are `true’ if the entity is in state q, we say that p implies q (or p
is stronger than q) and we write p , q.

Definition 3 (state implication). Consider a state test entity S ( ( , Q, h ).
For p, q P ( we define

p , q Û h (q) , h ( p) (4)

and we say that p `implies’ q and call this relation the `state implication.’

Proposition 1. Consider a state test entity S ( ( , Q, h ). The implications

on Q and ( are preorder relations. n
For a non empty family of tests ( a i)i we operationally introduce a product

test P i a i , as in the founding papers. It consists in choosing any one of the

a i , performing this chosen test, and considering the outcome obtained as the

outcome of P i a i. We clearly have that P i a i is true if and only if a i is true
for each i. This means that P i a i P h ( p) if and only if a i P h ( p) " i. Let us

introduce the concept of `product test’ formally.

Definition 4 (product test). Consider a state test entity S ( ( , Q, h ) and

a set ( a i)i P Q of tests. A product test P i a i is a test such that

P i a i P h ( p) Û a i P h ( p) " i (5)

We remark that the notation P i a i for a product test is somewhat mis-

leading. Indeed, in general a product test P i a i does not have to be a test

`formed’ by the a i , as it is the case in the physical example that inspired the

formal definition. It is just a test that satisfies the requirement expressed in
formula (5). We remark that this mathematical definition of a product test

makes sense for an empty family. In that case, it becomes a test which is

always true. This type of test will be formally defined a little later.

Proposition 2. Suppose that we have a state test entity S ( ( , Q, h ). If

an arbitrary family of tests ( a i)i P Q has a product test P i a i P Q; then this
product test is an infimum of the ( a i)i in Q, , .

Proof. We clearly have P i a i , a j " j. Suppose that b , a i " i, and

consider a state p P ( such that b P h ( p). Then we have a i P h ( p) " i.
As a consequence we have P i a i P h ( p). This shows that b , P i a i. n

We can define the following test: We do anything that we want with
the entity and just give the answer `yes.’ Clearly this test is always `true.’

We can also introduce the following test: We do anything with the entity and

just give the answer `yes’ or `no’ as we wish. Clearly this test is never `true.’

Let us define these special types of tests formally.
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Definition 5 (unit and zero tests). Consider a state test entity S ( ( , Q, h ).

We say that a test t is a unit test if t P h ( p) " p P ( . We say that a test d
is a zero test if d ¸ h ( p) " p P ( .

Proposition 3. Consider a state test entity S ( ( , Q, h ). If t is a unit test

we have for a P Q that a , t . If d is a zero test we have for a P Q that

d , a . n

In the founding papers it is supposed that for each nonempty family of

tests ( a i)i P Q there is a product test P i a i P Q. It is also supposed that there

exists a unit test t P Q and a zero test d P Q. Let us introduce these

requirements on the formal level.

Definition 6 (unital product entity). Suppose that we have a state test

entity S ( ( , Q, h ). We say that the entity is a `unital product’ entity if Q
contains a unit test t , and a zero test d and if for each family ( a i)i P Q there

is a product test P i a i P Q.

We remark that, since a product test of the empty family is an always-
true test, demanding the existence of a unit test is in fact redundant.

Proposition 4. Consider a unital product entity S ( ( , Q, h ). Then for

each set ( a i)i P Q of tests there exists an infimum and a supremum for the

preorder relation on Q. Further we have, for each unit test t and zero test d ,

and for a set of tests ( a i)i , and p P ( ,

t P h ( p) (6)

d ¸ h ( p) (7)

a i P h ( p) " i Û P i a i P h ( p) (8)

and for p, q P ( and a , b P Q we have

p , q Û h (q) , h ( p) (9)

a , b Û " r P ( : a P h (r) then b P h (r) (10)

Proof. An infimum for the set ( a i)i is a product test P i a i as we have

shown in Proposition 2. It is also easy to see that a product test P { a i , b " i} b
is a supremum for the family ( a i)i. n

In general there is no a priori correspondence between properties and
tests. Some properties can be tested and some tests give rise to properties.

We have discussed this general situation in detail in Aerts (1998) and will

not repeat it here. In fact here, as was also the case in the founding papers,

we are interested in the situation where we consider only testable properties.
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And we will, as in the founding papers, define properties as the equivalence

classes of tests.

Definition 7. Consider a state test entity S ( ( , Q, h ). Two tests a , b P Q
are said to be `equivalent,’ a ’ b , if both a , b and b , a hold. In other
words, a ’ b iff for p P ( , a P h ( p) Û b P h ( p).

If a and b are equivalent, they are considered to test the same property.

That is why we will identify the properties of the entity with the equivalence

classes of tests.

Definition 8 (property). Consider a state test entity S ( ( , Q, h ). Let

a P Q be a test. The `property’ a ( a ) tested by a is defined to be the

equivalence class of a in Q / ’ . In other words,

a ( a ) 5 { b P Q | b ’ a } (11)

The set of all properties of the entity will be denoted +, i.e., + 5 Q / ’ .

For the description of an entity by means of its states and properties we

propose state property systems, which were first defined in Aerts (1998). We

show that a unital product entity gives rise to a state property system.

Definition 9. We say that ( ( , , , +, , , Ù , Ú , j ), or more concisely

( ( , +, j ), is a `state property system’ if ( ( , , ) is a preordered set,

(+, , , Ù , Ú ) is a complete lattice, and j is a function

j : ( ® 3(+) (12)

such that for p P ( , I the maximal element, 0 the minimal element of +,

and (ai)i P +, we have

I P j ( p) (13)

0 ¸ j ( p) (14)

ai P j ( p) " i Û Ù i ai P j ( p) (15)

and for p, q P ( and a, b P + we have

p , q Û j (q) , j ( p) (16)

a , b Û " r P ( : a P j (r) then b P j (r) (17)

We remark that the reverse arrow of (15) follows from (17) and hence could

be left out of the definition. Indeed, we clearly have Ù i ai , aj " j, which

means that " p P ( : Ù i ai P j ( p) Þ aj P j ( p) " j.

Theorem 1. Consider a unital product entity S ( ( , Q, h ). The triple

( ( , +, j ) where
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+ 5 {a ( a ) | a P Q} (18)

is partially ordered by

a ( a ) , a ( b ) Û a , b ( a , b P Q) (19)

and j is the following function:

j : ( ® 3(+) (20)

p j j ( p) 5 {a ( a ) | a P h ( p)} (21)

is a state property system. The top and bottom element of + are given

respectively by

I 5 a ( t ) (22)

0 5 a ( d ) (23)

where t is a unit test and d is a zero test.

Proof. Let us prove that + is a complete lattice. The relation , on +
is well defined: a 8 ’ a , b ’ b 8 Þ a 8 , b 8. We clearly have that (+, , )

is a preordered set. We prove that , is also antisymmetric. Consider two

properties b, c P + such that b , c and c , b. Then there exists e , g P Q
such that b 5 a ( e ) and c 5 a ( g ). Now, a ( e ) , a ( g ) implies that e , g and

a ( g ) , a ( e ) implies that g , e . This means that e and g are equivalent.

Consequently a ( e ) 5 a ( g ). This shows that (+, , ) is a partially ordered set.

Consider now an arbitrary set (ai)i P +. Then there exists a set ( a i)i P Q
such that ai 5 a ( a i) " i. Consider a product test P i a i. Then a ( P i a i) is the

infimum of the set (ai)i. Indeed, consider a state p P ( such that a ( P ia i) P j ( p).
Consequently, a i P h ( p) " i. So we have a ( a i) P j ( p) " i. This shows that

a ( P i a i) , a ( a j) " j. Suppose now that a ( g ) , a ( a i) " i with g P Q and

consider a state p P ( such that a ( g ) P j ( p). Then we have a ( a i) P j ( p)

" i. Consequently we have that a i P h ( p) " i. This implies that P i a i P h ( p)

and so we have a ( P i a i) P j ( p). This shows that a ( g ) , a ( P i a i). Therefore

+ has arbitrary infima. It follows (and this is a result due to Birkhoff) that
+ has arbitrary suprema: for (ai)i P +: Ú i ai 5 ` {b P + | ai , b " i}. So

(+, , ) is a complete lattice.

For a unit test t and a state p we have that t P h ( p). Consequently

I 5 a ( t ) P j ( p). For a zero test d and a state p we have that d ¸ h ( p).

This implies that 0 5 a ( d ) ¸ j ( p).

Next we verify (15). Consider (ai)i P + and a state p such that
ai P j ( p) " i. Since there exists a set ( a i)i P Q such that ai 5 a ( a i) " i,
we have that a i P h ( p) " i. Consequently P i a i P h ( p). This implies that

a ( P i a i) P j ( p). So we have that Ù i ai 5 Ù i a ( a i) 5 a ( P i a i) P j ( p).

Equations (16) and (17) are easily verified. n
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3. STATE PROPERTY SYSTEMS AND CLOSURE SPACES

In this section we will investigate the state property systems and show

that they are in natural correspondence with closure spaces.

Proposition 5. Suppose that ( ( , +, j ) is a state property system. We

introduce the `Cartan map’ k :

k : + ® 3( ( ): a j k (a) 5 {p P ( | a P j ( p)} (24)

For a, b, (ai)i P + we have

k (I ) 5 ( (25)

k (0) 5 0¤ (26)

a , b Û k (a) , k (b) (27)

k ( Ù i ai) 5 ù
i
k (ai) (28)

It follows that k : + ® ( k (+), , , ù ) is an isomorphism of complete lattices.

Proof. Since I P j ( p) " p P ( , we have k (I) 5 ( . Since 0 ¸ j (p) " p P (
we have k (0) 5 0/ . To prove (27), just remark that (17) can be rewritten as

a , b Û " r P ( : r P k (a) then r P k (b) (29)

From Ù i ai , aj " j it follows that k ( Ù i ai) , k (aj) " j. This yields k ( Ù i ai) ,
ù i k (ai). To prove the other inclusion, take p P ù i k (ai); then p P k (aj) " j.
Hence aj P j ( p) " j, which implies, by (15), that Ù i ai P j ( p). From this it

follows that p P k ( Ù i ai). As a consequence we have ù i k (ai) , k ( Ù i ai). n
To avoid misunderstandings we recall the definition of a closure space.

Definition 10. A `closure space’ (Z, &) consists of a set Z and a family

of subsets & , 3(Z ) satisfying the following conditions:

Z P &, 0¤ P & (30)

(Gi)i P & Þ ù i Gi P & (31)

If these conditions hold, we call & a `closure system’ on Z. The `closure
operator ’ corresponding to this closure space is defined as

cl: 3(Z ) ® 3(Z ): Y j ù {G P & | Y , G} (32)

Theorem 2. Suppose that ( ( , +, j ) is a state property system. Let

us introduce

^ 5 k (+) 5 { k (a) | a P +} (33)

Then ^ is a closure system on ( .
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Proof. From the foregoing proposition it follows that ( P ^ and

0¤ P ^. Consider (Fi)i P ^. Then there exists (ai)i P + such that k (ai) 5
Fi " i. We have k ( Ù i ai) 5 ù i k (ai) 5 ù i Fi. This shows that ù i F i P ^. n

This theorem shows that to a state property system there naturally

corresponds a closure system on the set of states, where the properties are

represented by the closed subsets. We can also associate a state property
system with any closure space.

Theorem 3. Consider a closure space ( ( , ^). We introduce the following
definitions for F, G, (Fi)i P ^ and p, q P ( :

F , G Û F , G (34)

Ù i F i 5 ù i Fi (35)

Ú i Fi 5 cl( ø i Fi) (36)

j : ( ® 3(^): p j {F P ^ | p P F } (37)

p , q Û j (q) , j ( p) (38)

Then ( ( , , , ^, , , Ù , Ú , j ) is a state property system.

Proof. It is easy to show that (^, , , Ù , Ú ) is a complete lattice, with

maximal element I 5 ( and minimal element 0 5 0¤. It is trivial to verify
that (38) defines a preorder on ( . Clearly, we have I P j ( p), 0 ¸ j ( p)

" p P ( . Next, suppose that Fi P j ( p) " i. This means that p P Fi " i or

p P ù i F i. As a consequence we have Ù i Fi 5 ù i F i P j ( p). Finally we

verify (17). Let F, G P +. We then have F , G Û F , G Û ( p P F Þ
p P G) Û (F P j ( p) Þ G P j ( p)) and we are done. n

4. THE MORPHISMS

Theorems 2 and 3 show that there is a straightforward correspondence

between state property systems and closure spaces. We can extend this corre-
spondence to ª naturalº morphisms of these two structures. In this section we

introduce morphisms of state property systems and show their connection to

continuous maps between closure spaces.

Consider two state property systems ( ( , +, j ) and ( ( 8, +8, j 8). As

explained in Section 2, these state property systems respectively describe

entities S and S8. We will arrive at the notion of morphism by analyzing the
situation where the entity S is a subentity of the entity S8. In that case, the

following three natural requirements should be satisfied:

(i) If the entity S8 is in a state p8, then the state m (p8) of S is determined.

This defines a function m from the set of states of S8 to the set of states of S.
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(ii) If we consider a property a of the entity S, then to a there corresponds

a property n (a) of the ª biggerº entity S8. This defines a function n from the

set of properties of S to the set of properties of S8.
(iii) We want a and n (a) to be two descriptions of the ª sameº property

of S, once considered as an entity in itself, once as a subentity of S8. In other

words we want a and n (a) to be actual at once. This means that for a state

p8 of S8 [and a corresponding state m (p8) of S] we want the following

ª covariance principleº to hold:

a P j (m (p8)) Û n (a) P j 8( p8) (39)

We are now ready to present a formal definition of a morphism of state

property systems.

Definition 11. Consider two state property systems ( ( , +, j ) and

( ( 8, +8, j 8). We say that

(m, n): ( ( 8, +8, j 8) ® ( ( , +, j ) (40)

is a `morphism’ (of state property systems) if m is a function

m: ( 8 ® ( (41)

and n is a function

n: + ® +8 (42)

such that for a P + and p8 P ( 8 the following holds:

a P j (m (p8)) Û n (a) P j 8( p8) (43)

The following is an elegant rewriting of this definition.

Proposition 6. Consider two state property systems ( ( , +, j ) and

( ( 8, +8, j 8). Two functions m: ( 8 ® ( and n: + ® +8 define a morphism

(m, n): ( ( 8, +8, j 8) ® ( ( , +, j ) if and only if we have

j + m 5 n 2 1 + j 8 (44)

where n 2 1: 3(+8) ® 3(+): F 8 j n 2 1(F 8) 5 {a P + | n (a) P F 8}. n
The next proposition gives some properties of morphisms.

Proposition 7. Consider two state property systems ( ( , +, j ) and

( ( 8, +8, j 8) connected by a morphism (m, n): ( ( 8, +8, j 8) ® ( ( , +, j ). For

p8, q8 P ( 8 and a, b, (ai)i P + we have

p8 , q8 Þ m (p8) , m (q8) (45)

a , b Þ n (a) , n (b) (46)

n ( Ù i ai) 5 Ù i n (ai) (47)
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n (I ) 5 I 8 (48)

n (0) 5 08 (49)

Proof. Suppose that p8 , q8. We then have j 8(q8) , j 8( p8). From this

it follows that n 2 1( j 8(q8)) , n 2 1( j 8( p8)). Through (44) this yields j (m (q8))
, j (m ( p8)), whence m ( p8) , m (q8).

Next consider a , b and let r8 P ( 8 be such that n (a) P j 8(r8). Then

we have a P j (m (r8)) and, since a , b, this yields b P j (m (r8)). From this

it follows that n (b) P j 8(r8). So we have shown that n (a) , n (b).

From Ù i ai , aj " j we obtain n ( Ù i ai) , n (aj) " j. This yields n ( Ù i ai)

, Ù i n(ai). We still have to show that Ù i n (ai) , n ( Ù i ai). Let r8 P ( 8 be
such that Ù i n (ai) P j 8(r8). This implies that n (aj) P j 8(r8) " j [use (17)].

But from this we obtain aj P j (m (r8)) " j and hence Ù i ai P j (m (r8)). As a

consequence we have n ( Ù i ai) P j 8(r8). But then we have shown that Ù i n (ai)

, n ( Ù i ai).

We clearly have n (I ) , I 8. For all r8 P ( 8, we have I P j (m (r8)) and
hence n (I ) P j 8(r8). Through (17) this implies I 8 , n (I ), whence n (I ) 5
I 8. Trivially 08 , n (0). Suppose n (0) , 08 does not hold. Then the contraposi-

tion of (17) says there is an r8 P ( 8 such that n (0) P j 8(r8). This would

imply 0 P j (m (r8)), which is impossible. Therefore we have proven

n (0) 5 08. n

Proposition 8. Suppose that we have a morphism of state property

systems (m, n): ( ( 8, +8, j 8) ® ( ( , +, j ). Consider the Cartan maps k and

k 8 that connect these state property systems to their corresponding closure
spaces ( ( , ^) and ( ( 8, ^8), as was done in Theorem 2. For a P + we have

m 2 1( k (a)) 5 k 8(n (a)) (50)

Proof. We have p8 P m 2 1( k (a)) Û m ( p8) P k (a) Û a P j (m ( p8)) Û
n (a) P j 8( p8) Û p8 P k 8(n (a)). n

We can now connect morphisms of state property systems to continuous

maps (morphisms of closure spaces).

Proposition 9. Suppose that we have a morphism of state property

systems (m, n): ( ( 8, +8, j 8) ® ( ( , +, j ). If ( ( , ^) and ( ( 8, ^8) are the

closure spaces corresponding to these state property systems (cf. Theorem

2), then m: ( ( 8, ^8) ® ( ( , ^) is continuous.

Proof. Take a closed subset F P ^. Then there is an a P + such that

k (a) 5 F. From the foregoing proposition we have m 2 1(F ) 5 m 2 1( k (a)) 5
k 8(n (a)) P ^8. This proves our claim. n
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Proposition 10. Suppose we have two closure spaces ( ( , ^) and

( ( 8, ^8) and a continuous map m: ( 8 ® ( . Consider the state property

systems ( ( , ^, j ) and ( ( 8, ^8, j 8) corresponding to these two closure systems,
as proposed in Theorem 3. Then (m, m 2 1) is a morphism from ( ( 8, ^8, j 8)
to ( ( , ^, j ).

Proof. Continuity yields that m 2 1 is a function from ^ to ^8. Let us
now show formula (43) using the definition of j 8 and j as put forward in

Theorem 3. For F P ^ and p8 P ( 8 we have F P j (m (p8)) Û m (p8) P F
Û p P m 2 1(F ) Û m 2 1(F ) P j 8( p8). n

5. AN EQUIVALENCE OF CATEGORIES

The previous section demonstrates that there is a strong connection

between state property systems with their morphisms and closure spaces

with continuous maps. In this section we formalize this connection into an
equivalence of categories. We suppose that the reader is familiar with basic

category theory and refer the reader who is not to Borceux (1994).

We will introduce the categories, but before doing so, we define the

composition of morphisms of state property systems.

Definition 12. Given two morphisms of state property systems (m1, n1):

( ( 1, +1, j 1) ® ( ( 2, +2, j 2) and (m2, n2): ( ( 2, +2, j 2) ® ( ( 3, +3, j 3), their

composite is defined as

(m2, n2) + (m1, n1) 5 (m2 + m1, n1 + n2) (51)

Proposition 11. Given two morphisms of state property systems

(m1, n1): ( ( 1, +1, j 1) ® ( ( 2, +2, j 2) and (m2, n2): ( ( 2, +2, j 2) ® ( ( 3, +3,

j 3), their composite (m2, n2) + (m1, n1): ( ( 1, +1, j 1) ® ( ( 3, +3, j 3) is again a

morphism of state property systems.

Proof. We prove our claim by checking formula (44). We have j 3 +
(m2 + m1) 5 ( j 3 + m2) + m1 5 (n 2 1

2 + j 2) + m1 5 n 2 1
2 + ( j 2 + m1) 5 n 2 1

2 +
(n 2 1

1 + j 1) 5 (n1 + n2)
2 1 + j 1, which proves the assertion. n

Proposition 12. The composition of morphisms of state property systems

is associative, and given a morphism (m, n): ( ( 8, +8, j 8) ® ( ( , +, j ), the

following equalities hold:

(m, n) + (id ( 8, id+8) 5 (m, n) (52)

(id S , id+) + (m, n) 5 (m, n) (53)



372 Aerts et al.

Having these results under our belt, we can safely state the following

definitions.

Definition 13. We call SP the category of state property systems (Defini-

tion 9) with their morphisms (Definition 11) and Cls is the category of closure

spaces (Definition 10) with continuous maps.

Let us introduce the functors which will establish the equivalence of
categories.

Theorem 4. The correspondence F: SP ® Cls consisting of (1) the

mapping

| SP | ® | Cls| (54)

( ( , +, j ) j F ( ( , +, j ) (55)

where F ( ( , +, j ) is the closure space ( ( , ^) given by Theorem 2; and (2)

for every pair of objects ( ( , +, j ), ( ( 8, +8, j 8) of SP the mapping

SP(( ( 8, +8, j 8), ( ( , +, j )) ® Cls(F ( ( 8, +8, j 8), F ( ( , +, j )) (56)

(m, n) j m (57)

is a covariant functor.

Proof. This is, apart from some minor checks, a consequence of Theorem

2 and Proposition 9. n

Theorem 5. The correspondence G: Cls ® SP consisting of (1) the

mapping

| Cls| ® | SP | (58)

( ( , ^) j G ( ( , ^) (59)

where G ( ( , ^) is the state property system ( ( , ^, j ) given by Theorem 3;
and (2) for every pair of objects ( ( , ^), ( ( 8, ^8) of Cls the mapping

Cls(( ( 8, ^8), ( ( , ^)) ® SP(G ( ( 8, ^8), G ( ( , ^)) (60)

m j (m, m 2 1) (61)

is a covariant functor.

Proof. This is, apart from some minor checks, a consequence of Theorem

3 and Proposition 10. n

Next we characterize the isomorphisms of SP.

Proposition 13. A morphism (m, n) P SP(( ( 8, +8, j 8), ( ( , +, j )) is an

isomorphism if and only if m: ( 8 ® ( and n: + ® +8 are bijective.
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Proof. Let (m, n) be an isomorphism. The fact that it has a right inverse

implies that m is surjective and that n is injective. On the other hand, we

conclude from the existence of a left inverse that m is injective and that n
is surjective.

Now, let (m, n) be a morphism with m and n bijective. Let m 2 1: ( ®
( 8 and n 2 1: +8 ® + be the inverses of m and n. We show that (m 2 1, n 2 1)

is a morphism, using (44). From j + m 5 n 2 1 + j 8 we obtain j 8 5 n + j + m,

where n2 1: 3(+8) ® 3(+) and n: 3(+) ® 3(+8):T j n (T ) 5 {n (a) | a P T }.

This implies j 8 + m 2 1 5 n + j + m + m 2 1 5 n + j , which proves our assertion. n

We have arrived at the following result.

Theorem 6 (equivalence of SP and Cls). The functors F: SP ® Cls and

G: Cls ® SP establish an equivalence of categories. Moreover, F + G 5 IdCls.

Proof. Step 1: G + F. Given an object ( ( , +, j ) P | SP | , we have

GF( ( , +, j ) 5 ( ( , k (+), j ), where k : + ® 3( ( ) is the Cartan map defined

in Proposition 5 and

j : ( ® 3( k (+)) (62)

p j { k (a) | a P +, p P k (a)} 5 { k (a) | a P j ( p)} (63)

Given a morphism (m, n) P SP(( ( 8, +8, j 8), ( ( , +, j )), we obtain GF(m, n)

5 (m, m 2 1) P SP(( ( 8, k 8(+8), j 8), ( ( , k (+), j )

Step 2: GF > IdSP . For any object ( ( , +, j ) P | SP | , define

e ( ( ,+, j ): GF( ( , +, j ) ® ( ( , +, j ) (64)

e ( ( ,+, j ) 5 (id ( , k ) (65)

Then e 5 ( e ( ( ,+,j )): GF ® IdSP is a natural isomorphism. First we verify that

e ( ( ,+, j ) is a morphism of SP. Indeed, for a P +, p P ( we have k (a) P j ( p)

Û p P k (a) Û a P j ( p) 5 j (id S p). To show that (id S , k ) is an isomorphism,

we only have to prove that k : + ® k (+) is bijective (Proposition 13) and this

follows from Proposition 5. The naturality of e is an immediate consequence of

Proposition 8.
Step 3: FG 5 IdCls. For the morphisms this is trivial:

m j

G

(m, m 2 1) j

F

m (66)

where m is a morphism of Cls. Now consider an arbitrary closure space

( ( , ^). Then G ( ( , ^) 5 ( ( , ^, j ) where j ( p) 5 {F P ^ | p P F }. Hence

the corresponding Cartan map is given by
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k : ^ ® 3( ( ) (67)

F j {p P ( | F P j ( p)} 5 {p P ( | p P F } 5 F (68)

This implies FG( ( , ^) 5 F ( ( , ^, j ) 5 ( ( , k (^)) 5 ( ( , ^). n

6. THE FIRST AXIOM: STATE DETERMINATION AND T0

SEPARATION

In the founding papers the state p P ( of an entity S is identified with
the set of all properties a P + it makes actual. In this section, we investigate

the consequences this assumption has on state property systems and clo-

sure spaces.

Let S ( ( , Q, h ) be a unital product entity and let ( ( , +, j ) be its state

property system. Remember that for a state p P ( we have that

j ( p) 5 {a P + | a is actual when S is in state p} (69)

Hence the demand that a state p be completely determined by the set of all

properties it makes actual, i.e., by j ( p), is mathematically expressed by

ª j : ( ® 3(+) is injectiveº

Definition 14. A closure space (Z, &) is called `T0’ if for x,y P Z we

have cl(x) 5 cl( y) Þ x 5 y, where cl(x) is the usual notation for cl({x}).

Let us give some equivalent conditions to the injectivity of j .

Proposition 14. Let S ( ( ,Q, h ) be a unital product entity and let ( ( , +, j )

be the state property system it generates. The following are equivalent:

(1) j : ( ® 3(+) is injective.
(2) The preorder , on ( is a partial order.

(3) h : ( ® 3(Q) is injective.

(4) ( ( , ^) 5 F ( ( , +, j ) is a T0 closure space.

Proof. (1 Û 2) Remember that we have for p, q P ( : p , q iff j (q)

, j ( p). Hence p , q and q , p is equivalent to j (q) , j ( p) and j ( p) ,
j (q) [or j ( p) 5 j (q)]. It follows that the injectivity of j is equivalent to the

antisymmetry of , .

(1 Û 3) This is an immediate consequence of h (q) , h ( p) Û p ,
q Û j (q) , j ( p), where the first ` Û ’ is the definition of , and where

p, q P ( .

(1 « 4) Suppose p, q P ( are such that cl( p) 5 cl (q). From the
definition of ( ( , ^) we have that cl( p) 5 ù p P k (a) k (a) 5 ù a P j (p) k (a),

where k : + ® 3( ( ) is the Cartan map defined in Proposition 5. Hence

we have p P ù a P j (p) k (a) 5 ù a P j (q) k (a) { q. This yields that p P k (a)

for every a P j (q), or in other words, a P j (q) « a P j ( p). This shows
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j (q) , j ( p). Similarly q P ù a P j (p) k (a) gives j ( p) , j (q). So we have

j ( p) 5 j (q), whence by (1) p 5 q holds.

(4 « 1) Consider p, q P ( with j ( p) 5 j (q). Then cl( p) 5 ù a P j (p) k (a)
5 ù a P j (q) k (a) 5 cl(q). Since ( ( , ^) is T0 (4), we have p 5 q. n

The following terminology is taken from Aerts (1994).

Definition 15 (state-determined entity). We call a state test entity

S ( ( , Q, h ) `state determined’ if h : ( ® 3(Q) is injective. We will call a unital

product entity S ( ( , Q, h ) a `state-determined entity’ if it is state determined.

A state property system ( ( , +, j ) is a `state-determined state property system’
if j is injective.

Definition 16. We define SP0 as the subcategory of SP where the objects

are given by

| SP0 | 5 {( ( , +, j ) P | SP | : j is injective} (70)

and the morphisms by

SP0(( ( 8, +8, j 8),( ( , +, j )) 5 SP(( ( 8, +8, j 8),( ( , +, j )) (71)

where ( ( , +, j ), ( ( 8, +8, j 8) P SP0. So SP0 is the category of state-determined

state property systems. Similarly we will use Cls0 for the category of T0

closure spaces with continuous maps as morphisms.

Clearly Cls0 is an isomorphism-closed subcategory of Cls. We prove

that the same holds for SP0.

Proposition 15. The category SP0 is an isomorphism-closed subcategory

of SP: if ( ( 8, +8, j 8) P SP0, ( ( , +, j ) P SP, and (m, n): ( ( 8, +8, j 8) ® ( ( ,

+, j ) is an isomorphism of SP, then (m, n) is an isomorphism of SP0, in
particular ( ( , +, j ) P SP0.

Proof. By equation (71) we only have to show that ( ( , +, j ) P SP0,

i.e., that j is injective. Suppose j ( p) 5 j (q) holds for some p, q P ( .
Put p8 5 m 2 1( p), q8 5 m 2 1(q). We show j 8( p8) 5 j 8(q8). Indeed, a 5
n (n 2 1(a)) P j 8( p8) Û n 2 1(a) P j (m (p8)) 5 j ( p) 5 j (q) 5 j (m (q8)) Û a 5
n (n 2 1(a)) P j 8(q8). Since j is injective, this implies p8 5 q8, whence p 5 q. n

We also have the following:

Proposition 16. Let ( ( , ^) be a closure space. Let G: Cls ® SP be the

functor defined in Theorem 5. Then

( ( ,^) P | Cls0 | Û G ( ( ,^) 5 ( ( ,^,j ) P | SP0 | (72)

where, as in Theorem 3, j : ( ® 3(^): p j {F P ^ | p P F }.
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Proof : ( Þ ) Suppose cl( p) 5 cl(q) implies p 5 q for all p,q P ( . We

have to show that j is injective. Suppose j ( p) 5 j (q) for some p, q P ( .

Then cl( p) 5 ù j ( p) 5 ù j (q) 5 cl(q). This yields p 5 q.
( Ü ) If G ( ( , ^) 5 ( ( , ^, j ) P | SP0 | , then j is injective. By Theorem

6 and Proposition 14 ( ( , ^) 5 FG( ( , ^) P | Cls0 | . n

We can now prove the following:

Theorem 7 (equivalence of SP0 and Cls0). The covariant functors F and

G (see Theorems 4 and 5) restrict and corestrict to functors F: SP0 ® Cls0

and G: Cls0 ® SP0, which establish an equivalence of categories.

Proof. This is an immediate consequence of Theorem 6 and Propositions

14 and 16. n

7. STATES AS STRONGEST ACTUAL PROPERTIES

Let S ( ( , Q,h ) be a state-determined entity and let ( ( , +, j ) be its state-

determined state property system. Then it is possible to identify a state p of

S with the strongest property it makes actual, i.e., with ` j ( p) P +. As a

consequence, one can embed ( ( , , ) into (+, , , Ù , Ú ) as an order-generating

subset. This engenders another equivalence of categories.
We start by embedding ( ( , , ) into (+, , ).

Theorem 8. Let ( ( , +, j ) be a state property system. The following
are equivalent:

(1) ( ( , +, j ) is a state-determined state property system

(2) If we define

s j : ( ® +: p j ` j ( p) (73)

then s j is injective and for p, q P ( we have

p , q Û s j ( p) , s j (q) (74)

Therefore, if ( ( , +, j ) is state determined, then s j is isotone and injective

and ( ( , , ) can be considered as a subposet of (+, , ). We will use the

notation ( j 5 s j ( ( ).

Proof. (2 « 1) Equation (74) and the injectivity of s j imply that ( ( , , )

is a poset, whence, through Proposition 14, j is injective.

(1 « 2) We first verify (74). Suppose p, q P ( . Then p , q Û j (q) ,
j ( p) Û [s j (q), I ] , [s j ( p), I ] Û s j ( p) , s j (q). Since the injectivity of j
implies that ( ( , , ) is a poset, the injectivity of s j follows from (74). n

In the proof of Theorem 9 we will use the following result.
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Proposition 17. Let ( ( , +, j ) be a state property system. For a state

p P ( and a property a P +, we have, using the notation of Theorem 8,

the following equivalence:

a P j ( p) Û s j ( p) , a (75)

Proof. ( Þ ) This implication follows immediately from the definition of
s j . ( Ü ) Suppose s j ( p) , a. Applying (17) for state p, we have that s j ( p) 5
` j ( p) P j ( p) implies that a P j ( p). n

Theorem 9. Let ( ( , +, j ) be a state property system. Then 0 ¸ ( j and

( j is an order-generat ing subset of +: for every a P + we have

a 5 ~ {x P ( j | x , a} (76)

Proof. Since 0 ¸ j ( p) for every p, we have 0 ¸ ( j . The ` . ’ of equation

(76) is trivial. To show ` , `, we will use equation (17). So, take p P ( such

that a P j ( p). Then s j ( p) , a and hence s j ( p) P {x P ( j ) x , a}. This

implies s j ( p) , ~ {x P ( j ) x , a}, or ~ {x P ( j ) x , a} P ) j ( p). This

proves a , ~ {x P ( j | x , a}. n

We introduce some notation, which should make our intentions clear.

Definition 17. Let ( ( , +, j ) P SP. Then we put

H ( ( , +, j ): 5 ( ( j , +) (77)

Now, let us try to go ª back.º First we introduce some terminology.

Definition 18. We call ( ( , +) a `based complete lattice’ if + is a complete

lattice and ( , + is an order-genera ting subset not containing 0.
From Theorem 9 it follows that for every state property system

( ( , +, j ), H ( ( , +, j ) is a based complete lattice.

Theorem 10. Let ( ( , +) be a based complete lattice. If we put for
p, q P (

p , q Û p a q ( a is the order of +) (78)

and

j : ( ® 3(+) (79)

p j {a P + | p a a} 5 [p, I ] (80)

then ( ( , , , +, a , Ù , Ú , j ) 5 : K ( ( , +) is a state-determined state prop-

erty system.

Proof. This proof mostly consists of very easy verifications. We will

only make the following three remarks. For all p P ( , 0 ¸ j ( p) holds because
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0 ¸ ( . The ` Ü ’ of equation (17) is proven as follows: a P j ( p) Þ
b P j ( p) for every p in ( implies that {p P ( | p a a} , {p P ( | p a
b}. Since ( is order-generating, this implies a a b. The state property system
is state determined because ( ( , , ) is a poset. n

To deal with the morphisms, we will use `Galois connections’ . We will

quickly state the necessary results without proofs. Most of those proofs are

straightforward. We will not give the results in their full generality, but will

adapt them to the situation at hand. For more information we refer to Gierz
et al. (1980).

Definition 19 (Galois connection). Let + and +8 be complete lattices

and let g: + ® +8 and d: +8 ® + be maps. (g, d ) is a `Galois connection’

or an `adjunction’ between + and +8 provided that

" (a, a8) P + 3 +8: a8 , g (a) Û d (a8) , a (81)

g is called the `upper adjoint’ and d the `lower adjoint’ in (g, d ). d is also

called a lower adjoint of g and g an upper adjoint of d.

In fact, adjoints determine one another uniquely:

Theorem 11. Let + and +8 be complete lattices and let n: + ® +8 and

f : +8 ® + be maps. We have:

(1) n has a (necessarily unique) lower adjoint

n*: +8 ® +: a8 j ` {a P + | a8 , n (a)} (82)

[i.e., n is an (the) upper adjoint of n*] if and only if n preserves infima.

(2) f has a (necessarily unique) upper adjoint

f *: + ® +8: a j ~ {a8 P +8 | f (a8) , a} (83)

[i.e., f is a (the) lower adjoint of f*] if and only if f preserves suprema.

This implies that if f preserves suprema, f* exists and preserves infima,

whence ( f *)* exists and equals f. Of course the ª dualº holds for an infima-

preserving n. n

We remark that n: + ® +8 is said to `preserve infima’ if for every
family (ai)i P + we have n ( Ù i ai) 5 Ù i n(ai).

We introduce morphisms of based complete lattices and show their

connection to morphisms of state property systems.

Definition 20 (morphism of based complete lattices). Let ( ( , +) and

( ( 8, +8) be based complete lattices. Then a function f : + ® +8 is called a
`morphism of based complete lattices’ if

f ( ( ) , ( 8 (84)

f ( Ú i ai) 5 Ú i f (ai) " (ai)i P + (85)
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The composition of these morphisms is given by the normal composition

of functions.

Theorem 12. Consider (m, n) P SP (( ( 8, +8, j 8), ( ( , +, j )). Then

H (m, n) : 5 n*: H ( ( 8, +8, j 8) ® H ( ( , +, j ) (86)

is a morphism of based complete lattices.

Proof. Remember that H ( ( , +, j ) 5 ( ( j , +) (Definition 17). We know
that n preserves infima [see (47)], whence it has a suprema-preserving lower

adjoint n*. Next, take s j 8( p8) P ( 8 j 8. We have, for a P +, s j 8( p8) ,
n (a) Û n (a) P j 8( p8) Û a P j (m (p8)). This implies n*(s j 8 ( p8)) 5

` {a P + | s j 8( p8) , n (a)} 5 ` j (m (p8)) 5 s j (m (p8)) P ( j . n

Theorem 13. Let f :( ( 8, +8) ® ( ( , +) be a morphism of based complete

lattices. Then

K ( f ): 5 ( f ) (( 8, f *): K ( ( 8, +8) ® K ( ( , +) (87)

where f | (( 8: ( 8 ® ( is the restriction to ( 8 and corestriction to ( of f and

f *: + ® +8: a j ~ {a8 P +8 ) f (a8) , a}, is a morphism of state property

systems.

Proof. Remember that K ( ( , +) 5 ( ( , +, j ) with j ( p) 5 [p, I ] (Theorem

10). Take a P + and p8 P ( 8. Then f *(a) P j 8( p8) Û p8 ,
f * (a) Û f ( p8) , a Û a P j ( f( p8)) 5 j ( f ) (

( 8( p)). n

We will need the following result.

Proposition 18. Let +1, +2, +3, be complete lattices and let g1: +1 ®
+2 and g2: +2 ® +3 be two maps. If g1 and g2 are infima preserving, then

so is g2 + g1 and

(g2 + g1)* 5 (g1)* + (g2)* (88)

Dually, if g1 and g2 are suprema preserving, then so is g2 + g1 and

(g2 + g1)* 5 g *1 + g *2 (89)

Proof. We only prove the first case. For a P +3, b P +1 we have a ,
g2g1(b) Û (g2)*(a) , g1(b) Û (g1)*(g2)*(a) , b. Using the uniqueness of
adjoints, this proves our claim. n

Since it is quite obvious that the composition of morphisms of based

complete lattices yields again such a morphism, that it is associative, and

that id( ( ,+): 5 id+ satisfies the necessary axioms, we can safely introduce

the following category.
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Definition 21 (category of based complete lattices). The category of

based complete lattices with their morphisms is called L0.

We can now formally give the equivalence-establishing functors.

Theorem 14. The correspondence H: SP ® L0 consisting of (1) the

mapping

) SP ) ® ) L0 ) (90)

( ( , +, j ) j H ( ( , +, j ) (91)

where H ( ( , +, j ) is the based complete lattice ( ( j , +) given by Theorem
8; and (2) for every pair of objects ( ( , +, j ), ( ( 8, +8, j 8) of SP the mapping

SP(( ( 8, +8, j 8),( ( , +, j )) ® L0(H ( ( 8, +8, j 8), H ( ( , +, j )) (92)

(m, n) j H (m, n) 5 n* (93)

is a covariant functor.

Proof. This is, apart from some minor checks, a consequence of Theo-

rems 9 and 12 and Proposition 18. n

Theorem 15. The correspondence K: L0 ® SP consisting of (1) the

mapping

) L0 ) ® ) SP ) (94)

( ( , +) j K ( ( , +) 5 ( ( , +, j ) (95)

where j ( p) 5 [p,I ] (Proposition 10); and (2) for every pair of objects

( ( , +), ( ( 8, +8) of L0 the mapping

L0(( ( 8, +8), ( ( , +)) ® SP(K ( ( 8, +8), K ( ( , +)) (96)

f j K ( f ) 5 ( f ) (( 8, f *) (97)

is a covariant functor.

Proof. This is, apart from some minor checks, a consequence of Theo-

rems 10 and 13 and Proposition 18. n

Finally, we reach the following result.

Theorem 16 (equivalence of SP0 and L0). The covariant functor H
restricts to the functor H: SP0 ® L0 and the covariant functor K corestricts

to the functor K: L0 ® SP0. These functors establish an equivalence of
categories. Moreover, H + K 5 IdL0.

Proof. First we remark that K corestricts to the functor K: L0 ® SP0

by Proposition 10.
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Step 1: K + H. Consider ( ( , +, j ) P | SP0 | . Then KH( ( , +, j ) 5
( ( j , +, j ) with

j : ( j ® 3(+) (98)

ap 5 s j ( p) j [ap , I ] (99)

Also, if (m, n) P SP0(( ( 8, +8, j 8), ( ( , +, j )), then

KH(m, n) 5 K (n*) 5 (n* |
( j

( 8
j 8, n)

Step 2: IdSP0 > KH. For ( ( , +, j ) P | SP0 | define

h ( ( ,+, j ): ( ( , +, j ) ® KH( ( , +, j ) (100)

h ( ( ,+, j ) 5 (s j , id+) (101)

Then h 5 ( h ( ( ,+, j )): IdSP0 ® KH is a natural isomorphism. First we verify

that h ( ( ,+, j ) is a morphism of SP0. Indeed, for a P + and p P ( we have

a P j (s j ( p)) Û s j ( p) , a Û id+(a) 5 a P j ( p). To show that (s j , id+) is
an isomorphism, we only have to prove that s j : ( ® ( j is bijective (Proposition

13) and this follows from ( j 5 s j ( ( ) and Proposition 8. Finally we prove

the naturality of h . Take (m, n) P SP0(( ( 8, +8, j 8), ( ( , +, j )). We have to

show n* + s j 8 5 s j + m. This has been done in the proof of Theorem 12.

Step 3: HK 5 IdL0. Let f be a morphism of L0. We have

f j

K

( f | (( 8, f *) j
H

( f *)* 5 f (102)

Next, consider a based complete lattice ( ( , +). Then K ( ( , +) 5 ( ( , +, j )

with j ( p) 5 [p, I ] for p P ( . This implies that s j ( p) 5 ` j ( p) 5 p, whence

( j 5 ( . Therefore HK( ( , +) 5 H ( ( , +, j ) 5 ( ( j , +) 5 ( ( , +). n

Theorem 17. We have the following equivalences of categories:

Cls ’ SP (103)

Cls0 ’ SP0 ’ L0 (104)

This last theorem shows that a state-determined entity can ª equivalentlyº

be described by a T0 closure space (where the states are the pointsÐ or the
point closuresÐ and the properties are represented by the closed subsets), a

state-determined state property system, or a based complete lattice (where

the states form an order-generating subset of the property lattice).

ErneÂ(1984) shows the direct equivalence between Cls0 and L0.
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8. CONSTRUCTION OF THE (CO)PRODUCT OF TWO STATE
PROPERTY SYSTEMS

We will now construct the product of two state property systems in SP.

For the necessary category theory we refer to Borceux (1994).

Theorem 18. Let ( ( 1, +1, j 1) and ( ( 2, +2, j 2) be state property systems

(objects of SP). Then (P, (s1, s2)) is the [up to isomorphism (see Borceux
(1994), Proposition 2.2.2)] product of ( ( 1, +1, j 1) and ( ( 2, +2, j 2) in SP,

where P is the state property system ( ( , , , +, j ) with

( 5 ( 1 3 ( 2 (105)

( p1, p2) , (q1, q2) Û p1 , q1 and p2 , q2 for pi , qi P ( i (106)

+ 5 +1 q +2 (107)

5 {(a1, a2) | a1 P +1, a2 P +2, a1 Þ 01, a2 Þ 02} ø {0} (108)

equipped with the following partial order relation:

(a1, a2) , (b1, b2) Û a1 , b1 and a2 , b2 (109)

0 , (a1, a2) for all (a1, a2) (110)

and lattice operations

`
i

(a i
1, a i

2) 5 H ( Ù i a i
1, Ù i a i

2) if Ù i a i
1 Þ 01 and Ù i a i

2 Þ 02

0 otherwise
(111)

~
i

(a i
1, a i

2) 5 ( Ú i a i
1, Ú i a i

2) (112)

and with

j : ( ® 3(+) (113)

( p1, p2) j {(a1, a2) P + | a1 P j 1 ( p1), a2 P j 2( p2)} (114)

and si 5 ( p i , i i) with

p i: ( ® ( i: ( p1, p2) j pi (115)

i 1: +1 ® +1 q +2 (116)

a1 j (a1, I2) if a1 Þ 01 (117)

01 j 0 (118)

i 2: +2 ® +1 q +2 (119)

a2
j (I1, a2) if a2 Þ 02 (120)

02 j 0 (121)
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Proof. Step 1: P P | SP | . We have to check the conditions of Definition

9. After noting that j ( p1, p2) 5 j 1( p1) 3 j 2( p2), I 5 (I1, I2) this requires

more writing than thinking.
Step 2: si is a morphism of SP. We check equation (43). Let ( p1, p2) P ( ,

a1 P +1, and take a1 Þ 01 (the other case is trivial). Then i 1(a1) 5
(a1, I2) P j ( p1, p2) Û a1 P j 1( p1) 5 j 1( p 1( p1, p2)) [I2 P j 2( p2) always holds].

Step 3: Let Q 5 ( ( 8, +8, j 8) be a state property system and consider

two morphisms of SP: (m1, n1): Q ® ( ( 1, +1, j 1) and (m2, n2): Q ®
( ( 2, +2, j 2). We define (m, n) by

m: ( 8 ® ( : p8 j (m1( p8), m2( p8)) (122)

n: + ® +8: (a1, a2) j n1(a1) Ù n2(a2) (123)

0 j 08 (124)

Then (m, n): Q ® P is a morphism of SP. Indeed for ai P +i , ai Þ 0i , i 5
1, 2 (the zero case is trivial) and p8 P ( 8 we have (a1, a2) P j (m (p8)) 5
j (m1( p8), m2( p8)) Û a1 P j 1(m1( p8)), a2 P j 2(m2( p8)) Û n1(a1) P j 8( p8),
n2 (a2) P j 8( p8) Û n (a1, a2) 5 n1(a1) Ù n2(a2) P j 8( p8).

Step 4: si + (m, n) 5 (mi , ni). We have to show p i + m 5 m i and n +
i i 5 ni. The first is trivial. The second is not difficult either: for a1 Þ 01

(other case again trivial) we have n ( i 1(a1)) 5 n (a1, I2) 5 n1(a1) Ù n2(I2) 5
n1(a1) since n2(I2) 5 I8.

Step 5: We have to show that (m, n) is the only morphism such that
(mi , ni) 5 si + (m, n). Clearly m is the only function such that mi 5 p i + m.

Now, ni 5 n + i i clearly implies that for ai P +i , ai Þ 0 [n (0) 5 08 must

hold because n should be a morphism] we have n (a1, a2) 5 n ((a1, I2) Ù
(I1, a2)) 5 n (a1, I2) Ù n (I1, a2) 5 n ( i 1(a1)) Ù n ( i 2(a2)) 5 n1(a1) Ù n2(a2). n

We make some remarks. (1) If we consider the opposite category SPop,
this product becomes a coproduct. This is a generalization of the coproduct

(tensor product) of property lattices of Aerts (1984a), which is in fact a

product in L0 (or a coproduct in Lop
0 ). (2) As the finite coproduct of Aerts

(1984a) has been generalized to arbitrary coproducts (Aerts and Valckenborgh,

1998), the product of the previous theorem can also be constructed for

arbitrary families of state property systems. (3) Even before we did the
calculations for the previous theorem, we knew the category SP had arbitrary

products, since it is equivalent to the topological (and hence complete)

category Cls.
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